news

AI在商业中的现状2025

AI在商业中的现状2025:学习与转型的鸿沟 报告原文

TL.DR

  • 95% 的企业 GenAI 项目未见 ROI,根因在“不会学习”:系统缺少持久记忆、基于反馈的适配与持续改进。
  • 采用多、落地少:从试点到生产仅约 5% 成功;大企业上线需 …
news

AI在商业中的现状2025

AI在商业中的现状2025:学习与转型的鸿沟 报告原文

TL.DR

  • 95% 的企业 GenAI 项目未见 ROI,根因在“不会学习”:系统缺少持久记忆、基于反馈的适配与持续改进。
  • 采用多、落地少:从试点到生产仅约 5% 成功;大企业上线需 9 个月+、中型约 90 天;影子 AI 广泛存在。
  • 投资偏见:预算偏向销售/市场,而更高 ROI 常在法务/采购/财务等后台及可替代 BPO 的流程。
  • 制胜之道:购买胜于自建;聚焦狭窄高价值用例,深度嵌入工作流,以反馈闭环驱动学习并明确数据边界。
  • 演进与行动:Agentic AI → Agentic Web(MCP/A2A/NANDA);优先选择可学习、可集成、可度量改进的系统,将“工作流集成+持续改进”设为 KPI。

I. 报告概述与核心概念

  • 报告标题与作者: 《AI在商业中的现状2025》,由MIT NANDA团队(Aditya Challapally, Chris Pease, Ramesh Raskar, Pradyumna Chari)于2025年7月发布。
  • 研究目标: 评估企业对生成式AI(GenAI)的投资回报率,并识别其成功或失败的关键因素。
  • 核心发现: 尽管企业投入了300-400亿美元,但95%的组织在GenAI投资中未能获得回报,形成了显著的“GenAI鸿沟”。
  • GenAI鸿沟的定义: 极少数(5%)的AI试点项目取得了数百万美元的价值,而绝大多数项目停滞不前,对盈亏没有可衡量影响。这种鸿沟并非由模型质量或法规驱动,而是由方法论决定。
    • 研究方法:系统性回顾300多项公开披露的AI倡议。对52家组织的代表进行结构化访谈。收集了来自四场主要行业会议的153位高级领导的调查回复。
  • 主要结论: 核心障碍不是基础设施、法规或人才,而是学习能力。大多数GenAI系统不保留反馈、不适应上下文,也无法随时间改进。

II. GenAI鸿沟的表现形式

高采用率,低转型

通用LLM工具(如ChatGPT, Copilot): 80%的组织已探索或试点,40%已部署,主要提升个人生产力,但对盈亏影响有限。 企业级定制或销售工具: 60%的组织评估过,但仅20%进入试点,5%投入生产,主要因工作流脆弱、缺乏上下文学习和与日常操作不符而失败。 行业颠覆有限: 只有技术和媒体行业显示出有意义的结构性变化,其他七个主要行业(专业服务、医疗健康、消费零售、金融服务、先进工业、能源材料)的转型程度有限。报告使用“AI市场颠覆指数”衡量,该指数考虑了市场份额波动、AI原生公司的营收增长、新AI商业模式的出现、用户行为变化和高管组织变动频率。 试点到生产的鸿沟: 企业AI解决方案的95%失败率是GenAI鸿沟最清晰的体现。

企业悖论与“影子AI经济”

企业规模与成功率: 营收超过1亿美元的企业在试点数量上领先,但在规模化部署方面落后;中型市场公司行动更快,从试点到全面实施平均90天,而企业需要9个月或更长时间。 影子AI经济: 尽管官方企业倡议停滞不前,但员工通过个人AI工具(如个人ChatGPT账户)私下进行AI转型。90%的受访公司员工报告定期使用个人AI工具进行工作,远超40%的公司官方采购LLM订阅的比例。这表明灵活性和响应式工具的重要性。

投资偏见

GenAI预算的50%(根据高管分配假设)流向销售和市场功能,因为其可衡量性更强,与董事会KPI直接挂钩。 投资回报率高的领域被忽视: 后台自动化(如法律、采购、财务)通常能带来更好的投资回报率,但由于其效率提升不易量化,往往投资不足。 信任与社会认同: 采购决策中,推荐、现有关系和风险投资方介绍比产品质量或功能集更重要。

📅 2025-08-27 ⏱️ 1 分钟 📝 145 字
#AI #MIT #report